/v

AARHUS UNIVERSITET

Microservices and DevOps

Scalable Microservices
Replication and Redundancy

Henrik Baerbak Christensen

/v

AARHUS UNIVERSITET =~ |
« Colouris, Dollimore, Kindberg,

2001

— Gets deep into the details of
reliable communication, byzantine
failures, etc.

— We approach it from the
architectural level

« Terminology
« Overall protocol

CS@AU Henrik Baerbak Christensen

Literature

DISTRIBUTED SYSTEMS
CONCEPTS AND DESIGN

Y Replication

AARHUS UNIVERSITET

« As always — not only one architectural quality is affected
but several

— Availability increase:
* QOur primary concern in MSDO
 If one man is down, another man can take over

— Performance increase:
« More men can pull more load

CS@AU Paad Bass Tactic: Maintain multiple copies of data

/v Replication

AARHUS UNIVERSITET
 But
— Cost:
« Two nodes cost more than one
— Reliability:

« More complex algorithms increase probability of error (fail-over, ping-
echo, voting, ...)
— Data consistency
* What if Areads from node X while B writes to node Y ?
 CAP theorem
— Consistency: All see same data

— Availability: Every request is served
— Partition Tolerance: Operational despite arbitrary failures

* RDB goes for C while NoSQL (generally) goes for A

eV Discussion

AARHUS UNIVERSITET

« What is the difference from replication?

« Which Nygard pattern covers ‘redundancy’?

CS@AU Henrik Beerbak Christensen 5

/v Availability Calculations

AARHUS UNIVERSITET

 If a system of n replicated servers in which each server
has a probability, p, of failing, then the system has total
probability

o EX 5
— p =5% (0.05)

* (72 minutes every 24h)
— n=3
— Overall failure rate:

— 0.05%3=0.000125 = 0,125 per mille
* (10 seconds every 24h)

CS@AU Henrik Beerbak Christensen 6

/v

AARHUS UNIVERSITET

Active Replication

Fully redundant primaries

CS@AU Henrik Baerbak Christensen

/v Architecture

AARHUS UNIVERSITET
— Clients multicast requests to all nodes
— All nodes process identically but independently and reply

— Front-End receives answers
« May do one of several things: Use first one, compare, vote...

Active replication

O=E

A

CS@AU Henrik Baerbak Christensen 8

/v Active Replication

AARHUS UNIVERSITET

» Benefits
— No performance penalty for failures
» (no promotion of a slave to become primary, all are primary)

— (Potentially) Simpler servers
» Less need for hand-shaking

- Still need state resynchronization code in case a node has failed and
need to get up-to-date

« Liabilities
— No better performance than if using only one node

— Complexity in front-end
« Multicast, voting, ...

— Consistency amongst nodes...

/v

AARHUS UNIVERSITET

CS@AU

Passive Replication

Master/slave
Primary/backup

Henrik Baerbak Christensen

10

/v Architecture

AARHUS UNIVERSITET

— One node is primary

« executes operations (notably writes/updates)

« sends copies to slaves (in case of write/update)
— Primary failure

* One slave is promoted to become primary

The passive (primary-backup) model for fault tolerance

(O
(O

CS@AU Henrik Baerbak Christensen 11

eV Passive Replication

AARHUS UNIVERSITET
 Liablilities
— Additional complexity in algorithms to keep slaves up-to-date,
ensuring consistency, etc...

— It takes time for the slaves to note that the primary is gone and
promote one as new primary
 MongoDB — up to one minute
« Meanwhile the clients are waiting — slow response
— Primary takes all requests
» No obvious performance gain from balancing load
— Storage requirements
* N nodes require N times storage
« EcoSense: for every 1TB extra diskspace we pay for 3 TB

/v Example: MongoDB

AARHUS UNIVERSITET

« MongoDB: Replica Sets

— Built to run on commodity hardware

« That is, the stuff that you buy in a shop, not necessarily the stuff the
IT department has in the server room

« Commodity disks, however, have higher failure rates

— But — avoid failures by using replication
« Three is a recommendation

« Two + arbiter is another option
— Arbiter does not store anything but participate in electing a new primary

/v Example: MongoDB

AARHUS UNIVERSITET
« Use heart beat to monitor the replica set

- Primary £,
i

\
37 N
& Z

Heartbeat
Secondary 4 g Secondary

New Primary Elected

§) Replication §

CS@AU Henrik Beerbak Christensen 14

/v Example: MongoDB

AARHUS UNIVERSITET
* Highly configurable

— Write concern

» Unacknowledged happy go lucky
» Acknowledged primary has received write request
« Journaled primary has journaled the write request

* Replica Acknowledged n replicas have received write request

— Read concerns
« Writes go to primary, but all reads may go to slaves
— Boosts performance
— Sacrifice consistency, you may get old data!
— MongoDB is eventual consistent

/v

AARHUS UNIVERSITET

Redis Cluster

Replication and Sharding and
Availablility
“Det er jo hele tre ting?!?”

/v Replication

AARHUS UNIVERSITET
« The replication model of Redis Is very simple

* One instance acts as the ‘master’

— Just like we have used it so far..
« Assume it is on node ‘redis1:6379’

* Then we can start another instance and make it slave

— Start another instance, open the ‘redis-cli’ and issue
* ‘replicaof redis1 6379’

/v

AARHUS UNIVERSITET

This system works using three main mechanisms:

Replication

1. When a master and a replica instances are well-connected, the master keeps the replica updated by sending a
stream of commands to the replica, in order to replicate the effects on the dataset happening in the master side
due to: client writes, keys expired or evicted, any other action changing the master dataset.

2. When the link between the master and the replica breaks, for network issues or because a timeout is sensed in
the master or the replica, the replica reconnects and attempts to proceed with a partial resynchronization: it
means that it will try to just obtain the part of the stream of commands it missed during the disconnection.

3. When a partial resynchronization is not possible, the replica will ask for a full resynchronization. This will involve
a more complex process in which the master needs to create a snapshot of all its data, send it to the replica, and
then continue sending the stream of commands as the dataset changes.

* You can read from the replica but you cannot write to it

— And you have to connect to ‘the one you need to speak to’
* Redisl ? Redis2?

CS@AU Henrik Baerbak Christensen 18

/v Redis Cluster

AARHUS UNIVERSITET

* Redis Cluster provides
— Sharding and Replication and FailOver

Redis Cluster 101

Redis Cluster provides a way to run a Redis installation where data is automatically sharded across multiple Redis
nodes.

Redis Cluster also provides some degree of availability during partitions, that is in practical terms the ability to
continue the operations when some nodes fail or are not able to communicate. However the cluster stops to operate

in the event of larger failures (for example when the majority of masters are unavailable).

So in practical terms, what do you get with Redis Cluster?

 The ability to automatically split your dataset among multiple nodes.
 The ability to continue operations when a subset of the nodes are experiencing failures or are unable to

communicate with the rest of the cluster.

https://redis.io/topics/cluster-tutorial

CS@AU Henrik Baerbak Christensen 19

/v Sharding

AARHUS UNIVERSITET

* Every key is part of a hash slot
— Redis has exactly 16384 hash slots
» Every key is mapped to one of these hash slots
« Every node (master) is responsible for a subset, e.qg.

« Node A contains hash slots from 0 to 5500.
« Node B contains hash slots from 5501 to 11000.
» Node C contains hash slots from 11001 to 16383.

« If we add two more nodes (masters), we just move the
relevant hash slots to the new masters...

— Uhum, transactions need to cover only keys in the same slot ®
« So there is a mechanism to guaranty that... anyway...

CS@AU Henrik Baerbak Christensen 20

/v Master-Slave

AARHUS UNIVERSITET

« So if we loose master B, then all keys in hash slot 5501 —
11000 are lost ®

« Solved by having a replica of B, let us call it B1

Node B1 replicates B, and B fails, the cluster will promote node B1 as the new master and will continue to operate
correctly.

However, note that if nodes B and B1 fail at the same time, Redis Cluster is not able to continue to operate.

CS@AU Henrik Baerbak Christensen 21

/v Eventual Consistency (?)

AARHUS UNIVERSITET
« Only a weak consistency...

Redis Cluster consistency guarantees

Redis Cluster is not able to guarantee strong consistency. In practical terms this means that under certain conditions
it is possible that Redis Cluster will lose writes that were acknowledged by the system to the client.

The first reason why Redis Cluster can lose writes is because it uses asynchronous replication. This means that during
writes the following happens:

» Your client writes to the master B.
» The master B replies OK to your client.
« The master B propagates the write to its replicas B1, B2 and B3.

 If B fails before propagating the write, the data is lost!

CS@AU Henrik Baerbak Christensen 22

g Redis cluster

AARHUS UNIVERSITET >>> Performing hash slots allocation on 6 nodes...

 The minimal cluster requires at i
least three masters...

+ S0, you need 6 instances!

>>> Nodes configuration updated
>>> Assign a different config epoch to each node

—_ Th ree m aste rS (m I n I m u m) ;:ztfﬁgdinq CL?S?ER:.MEETtEeJS'EEgES to join the cluster

>>> Performing Cluster Check (using node 172.18.0.2:7000)

— And each one with a replica g _ e :

 ldeally, the machines are
geographically distributed, of course

b b 1b 72a4
[0K] All n ag about configuration.
>>> Check for open slots...
>>> Check slots coverage...
[0K] All 16384 slots covered.

CS@AU Henrik Baerbak Christensen 23

/v

AARHUS UNIVERSITET
« Start 6 instances, configured to cluster mode

Process

The following is a minimal Redis cluster configuration file:

port 7000

cluster-enabled yes
cluster-config-file nodes.conf
cluster-node-timeout 5000

appendonly yes

« Start the ‘redis-cli’ in any node and issue the cluster
command

redis—-cli ——-cluster create 127.0.0.1:7000 127.0.0.1:7001 \
127.0.0.1:7002 127.0.0.1:7003 127.0.0.1:7004 127.0.0.1:7005 \

——cluster-replicas 1

No DNS — Use IP addresses !!!
CS@AU Henrik Baerbak Christ®

/v And...
AARHUS UNIVERSITET

° That |S Itl [0K] All nodes agree about slots configuration.
>>> Check for open slots...

»>>> Check slots coverage...
[OK] All 16384 slots covered.

 Open acliin any node in cluster mode (-c)

§ redis-cli -c¢ -p 7000

redis 127.0.0.1:7000> set foo bar

-> Redirected to slot [12182] located at 127.0.0.1:7002
OFE

redis 127.0.0.1:7002> set hello world

-» Redirected to slot [866&] located at 127.0.0.1:7000
OFK

redis 127.0.0.1:7000> get foo

-» Redirected to slot [12182] located at 127.0.0.1:7002

CS@AU Henrik Baerbak Christensen 25

/v Dockerizing a Manual Test

AARHUS UNIVERSITET
« The fine tutorial requires redis installed on you machine.

 ltis (almost) as easy to run using Docker but...

— You need to create a docker network
* So the instances can talk to each other...

docker network create redis-network

— Then create the instances
» 6x the one below, varying the parameters

docker run -d --name redisl -p 7001:7000 --network redis-network redis:6.2.5-alpine redis-server
--port 7000 --cluster-enabled yes --cluster-config-file nodes.conf --cluster-node-timeout 5008 --appe

ndonly yes

CS@AU Henrik Baerbak Christensen 26

/v Dockerizing

AARHUS UNIVERSITET

* [|nitialize the Cluster

— You need the IP addresses on the internal network

* docker exec —ti redisl sh
— And issue ‘ifconfig’ to find that

» Fortunately Docker assigns them consecutive numbers

 And then

docker exec -ti redisl redis-cli -p 7080 --cluster create 172.18.0.2:760060 172.18.0.3:7000 172.18.
c0.4:7000 172.18.0.5:76000 172.18.0.6:70060 172.18.0.7:7600 --cluster-replicas 1

csdev@ml:~/proj/evuproject/redis-replication$ docker exec -ti redis2 redis-cli -p 7000 -c
127.8.8.1:7080> set cluster isWorking
> Redirected to slot [14041] located at 172.18.0.4:7000

0K
CS@AU 'TEJEJJJZHWB}I

/v

AARHUS UNIVERSITET

Java Side

/v

AARHUS UNIVERSITET

public RedisCluster() {
Set<HostAndPort> jedisClusterNodes

new HashSet<>();

717 A e e] A AdAicravan ~T 1 T T
LL atTemptT To discovel cLusTel noaes

jedisClusterNodes.add(new HostAndPort(host: "127.8.8.1",
JedisCluster jc
Ilbapll};

joc.get("foo");

new JedisCluster(jedisClusterNodes);

joc.set("foo",

String value

System.out.println(" -= got value = " + value);

System.ovt.println("=== Enumerating the cluster nodes:

jc.getClusterNodes().keySet().stream().forEach(System.ovt: :printiln);

Was...

... actually really easy, as Jedis supports it directly...

At amatienT
auTomatTicaol

L1y

port: 78081));

N

~~

Reason for

portmapping to
localhost

r

Cluster Demo for Redis ===

CS@AU

Henrik Baerbak Christensen

FIRST have to set up a Redis cluster for this to work.
got value = bar

Enumerating the cluster nodes: ===

172.18.8.6:7000
172.18.8.7:7000
172.18.8.3:7000
172.18.8.2:7000
172.18.8.4:7000
172.18.8.5:7000

29

