
Microservices and DevOps

Scalable Microservices
Replication and Redundancy

Henrik Bærbak Christensen



Literature
• Colouris, Dollimore, Kindberg, 

2001

– Gets deep into the details of 

reliable communication, byzantine 

failures, etc.

– We approach it from the 

architectural level

• Terminology

• Overall protocol

CS@AU Henrik Bærbak Christensen 2



Replication

• Replication: Maintenance of copies of data at multiple 

computers

• As always – not only one architectural quality is affected 

but several

– Availability increase:

• Our primary concern in MSDO

• If one man is down, another man can take over

– Performance increase: 

• More men can pull more load

CS@AU Henrik Bærbak Christensen 3Bass Tactic: Maintain multiple copies of data



Replication

• But

– Cost:

• Two nodes cost more than one

– Reliability:

• More complex algorithms increase probability of error (fail-over, ping-

echo, voting, …)

– Data consistency

• What if A reads from node X while B writes to node Y ?

• CAP theorem

– Consistency: All see same data

– Availability: Every request is served

– Partition Tolerance: Operational despite arbitrary failures

• RDB goes for C while NoSQL (generally) goes for A

CS@AU Henrik Bærbak Christensen 4



Discussion

• Redundancy: In engineering, redundancy is the 

duplication of critical components or functions of a 

system with the intention of increasing reliability of the 

system, usually in the form of a backup or fail-safe. 
[Wikipedia]

• What is the difference from replication?

• Which Nygard pattern covers ‘redundancy’?

CS@AU Henrik Bærbak Christensen 5



Availability Calculations

• If a system of n replicated servers in which each server 

has a probability, p, of failing, then the system has total 

probability

• pn of failing

• Ex

– p = 5% (0.05)

• (72 minutes every 24h)

– n = 3

– Overall failure rate: 

– 0.053 = 0.000125 = 0,125 per mille

• (10 seconds every 24h)

CS@AU Henrik Bærbak Christensen 6

That is: 
1 - pn availability



Active Replication

Fully redundant primaries

CS@AU Henrik Bærbak Christensen 7



Architecture

– Clients multicast requests to all nodes

– All nodes process identically but independently and reply

– Front-End receives answers

• May do one of several things: Use first one, compare, vote…

CS@AU Henrik Bærbak Christensen 8



Active Replication

• Benefits

– No performance penalty for failures

• (no promotion of a slave to become primary, all are primary)

– (Potentially) Simpler servers

• Less need for hand-shaking

• Still need state resynchronization code in case a node has failed and 

need to get up-to-date

• Liabilities

– No better performance than if using only one node

– Complexity in front-end

• Multicast, voting, ...

– Consistency amongst nodes...

CS@AU Henrik Bærbak Christensen 9



Passive Replication

Master/slave

Primary/backup

CS@AU Henrik Bærbak Christensen 10



Architecture

– One node is primary

• executes operations (notably writes/updates)

• sends copies to slaves (in case of write/update)

– Primary failure

• One slave is promoted to become primary

CS@AU Henrik Bærbak Christensen 11

What is the 
FrontEnd = FE?



Passive Replication

• Liabilities

– Additional complexity in algorithms to keep slaves up-to-date, 

ensuring consistency, etc...

– It takes time for the slaves to note that the primary is gone and 

promote one as new primary

• MongoDB – up to one minute

• Meanwhile the clients are waiting – slow response

– Primary takes all requests

• No obvious performance gain from balancing load

– Storage requirements

• N nodes require N times storage

• EcoSense: for every 1TB extra diskspace we pay for 3 TB

CS@AU Henrik Bærbak Christensen 12



Example: MongoDB

• MongoDB: Replica Sets

– Built to run on commodity hardware

• That is, the stuff that you buy in a shop, not necessarily the stuff the 

IT department has in the server room

• Commodity disks, however, have higher failure rates

– But – avoid failures by using replication

• Three is a recommendation

• Two + arbiter is another option

– Arbiter does not store anything but participate in electing a new primary

CS@AU Henrik Bærbak Christensen 13



Example: MongoDB

• Use heart beat to monitor the replica set

CS@AU Henrik Bærbak Christensen 14



Example: MongoDB

• Highly configurable

– Write concern

• Unacknowledged happy go lucky

• Acknowledged primary has received write request

• Journaled primary has journaled the write request

• Replica Acknowledged n replicas have received write request

– Read concerns

• Writes go to primary, but all reads may go to slaves

– Boosts performance

– Sacrifice consistency, you may get old data!

– MongoDB is eventual consistent

CS@AU Henrik Bærbak Christensen 15



Redis Cluster

Replication and Sharding and 

Availability

“Det er jo hele tre ting?!?”



Replication

• The replication model of Redis is very simple

• One instance acts as the ‘master’

– Just like we have used it so far..

• Assume it is on node ‘redis1:6379’

• Then we can start another instance and make it slave

– Start another instance, open the ‘redis-cli’ and issue

• ‘replicaof redis1 6379’

CS@AU Henrik Bærbak Christensen 17



Replication

• You can read from the replica but you cannot write to it

– And you have to connect to ‘the one you need to speak to’

• Redis1 ? Redis2?

CS@AU Henrik Bærbak Christensen 18



Redis Cluster

• Redis Cluster provides

– Sharding and Replication and FailOver

CS@AU Henrik Bærbak Christensen 19

https://redis.io/topics/cluster-tutorial



Sharding

• Every key is part of a hash slot

– Redis has exactly 16384 hash slots

• Every key is mapped to one of these hash slots

• Every node (master) is responsible for a subset, e.g.

• If we add two more nodes (masters), we just move the 

relevant hash slots to the new masters…

– Uhum, transactions need to cover only keys in the same slot 

• So there is a mechanism to guaranty that… anyway…

CS@AU Henrik Bærbak Christensen 20



Master-Slave

• So if we loose master B, then all keys in hash slot 5501 –

11000 are lost 

• Solved by having a replica of B, let us call it B1

CS@AU Henrik Bærbak Christensen 21



Eventual Consistency (?)

• Only a weak consistency…

• If B fails before propagating the write, the data is lost!

CS@AU Henrik Bærbak Christensen 22



Redis cluster

• The minimal cluster requires at

least three masters…

• So, you need 6 instances!

– Three masters (minimum)

– And each one with a replica

• Ideally, the machines are 

geographically distributed, of course

CS@AU Henrik Bærbak Christensen 23



Process

• Start 6 instances, configured to cluster mode

• Start the ‘redis-cli’ in any node and issue the cluster 

command

CS@AU Henrik Bærbak Christensen 24

No DNS – Use IP addresses !!!



And…

• That is it!

• Open a cli in any node in cluster mode (-c)

CS@AU Henrik Bærbak Christensen 25



Dockerizing a Manual Test

• The fine tutorial requires redis installed on you machine.

• It is (almost) as easy to run using Docker but…

– You need to create a docker network

• So the instances can talk to each other…

– Then create the instances

• 6x the one below, varying the parameters

CS@AU Henrik Bærbak Christensen 26



Dockerizing

• Initialize the Cluster

– You need the IP addresses on the internal network

• docker exec –ti redis1 sh

– And issue ‘ifconfig’ to find that

• Fortunately Docker assigns them consecutive numbers

• And then

• Testing

CS@AU Henrik Bærbak Christensen 27



Java Side



Was…

• … actually really easy, as Jedis supports it directly…

CS@AU Henrik Bærbak Christensen 29

Reason for 
portmapping to

localhost


